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Abstract

Insight mining transforms complex data into actionable knowledge, enabling
effective decision-making across diverse domains. Given the richness and in-
terpretative power of visualizations, visual insight mining - the process of
extracting meaningful insights from raw data through intuitive visual rep-
resentations - has become increasingly vital. This survey systematically re-
views the current landscape of visual insight mining, addressing the critical
questions: “How can visualizations be generated from data?” and “How can
insights be extracted from wvisualizations?”. Specifically, we delve into six
distinct tasks (i.e., task decomposition, visualization generation, visualiza-
tion recommendation, chart parsing, chart question answering, and insight
generation) in the process of visual insight mining, and provide a comprehen-
sive analysis of rule-based, learning-based, and large-model-based methods
for each task. Based on the survey, we discuss current research challenges
and outline future opportunities. By viewing visualization as a bridge in the
data-to-insight path, this survey offers a structured foundation for further
exploration in visual insight mining.

Keywords: Insight Mining, Data Visualization, Rule-based Methods,
Learning-based Methods, Large-model-based Methods

1. Introduction

1.1. Background

In the era of big data, insight mining that extracts meaningful insights
from vast and complex datasets [I] has become a critical topic across various
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domains [2]. Despite its importance, this process has historically been com-
plex and resource-intensive, requiring advanced expertise in statistical soft-
ware, programming libraries, and domain knowledge [3], 4 [5 6 [7, [§]. This ex-
pertise barrier creates an imbalance between data availability and actionable
understanding - while organizations collect unprecedented amounts of infor-
mation, its value remains locked without effective interpretation tools. In this
situation, visualization [9] emerges as a powerful medium for bridging the gap
between data and human understanding, enabling analysts to perceive pat-
terns, identify anomalies, and communicate findings intuitively [10] 111, 12].

Visual insight mining is the process of using visualization to discover, ex-
tract, and communicate meaningful knowledge (such as patterns and trends)
from complex data [13]. This approach leverages the power of visual rep-
resentations to enhance human understanding and facilitate the discovery
of significant insights that might not be apparent through traditional data
analysis methods. In the context of visual insight mining, we mainly fo-
cus on automatically extracting insights from visualization, thereby reduc-
ing the burden on human analysts and enabling more rapid and accurate
decision-making. Instead of focusing on how visualization designs may help
humans extract insights directly from charts, visual insight mining empha-
sizes the automated presentation and identification of key information. The
pipeline of visual insight mining generally starts with exploring statistical
results from data [5], such as outstanding No.1, outlier, trend, correlation,
and so on [I4], [15]. Then, the statistical results are shown to users through
visualizations, allowing them to discover meaningful insights intuitively. As
illustrated in Figure [1| the process of visual insight mining can be gener-
ally divided into two stages of Data2Vis (i.e., generating visualizations from
data) and Vis2Insight (i.e., deriving insights from visualizations). The meth-
ods used at each stage have undergone significant transformations, driven by
advances in heuristic rules, machine learning (ML), and recently large mod-
els. However, little is known about these developments. This survey aims to
fill the gap by addressing the following questions:

e RQ1: In the stage of Data2Vis, “how can visualizations be generated
from data?”

e RQ2: In the stage of Vis2Insight, “how can insights be extracted from
visualizations?”
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Figure 1: Visual Insight Mining extracts insights from data with visualization as the
medium. The process consists of the transformation from data to visualization (Data2Vis),
followed by automated or interactive insight extraction (Vis2Insight).

1.2. Method Landscape

For RQ1, Data2Vis was conventionally a rule-based process that trans-
forms structured data into visualizations through predefined logical rules.
These rules typically mapped data attributes (e.g., numerical values, cate-
gories) to visual encodings (e.g., position, color, size) based on established
principles from visualization theory [16, 17, 18, 19 20, 21]. Rule-based sys-
tems relied on rigid templates and heuristics (e.g., automatically selecting
scatter plots for correlations [22] or line charts for temporal trends). Through
encoding visualization principles to optimize perceptual clarity, these systems
effectively prune suboptimal designs, ensuring deterministic outputs. While
effective for standardized reporting (e.g., business dashboards or scientific
plots) with transparency and reproducibility, rule-based systems struggled
to accommodate heterogeneous datasets, ambiguous user intents, and rigid
rules [23] [5, 24]. This rigidity underscored the need for more adaptive and
automated methods.

With the rise of statistical and ML [25], learning-based methods addressed
some of the above limitations by embedding adaptive intelligence into the
Data2Vis process [26]. For example, these methods leveraged knowledge
graphs and sequence-to-sequence models to contextualize user requirements
and generate visualization specifications [27, 28]. Moreover, researchers de-
veloped algorithms that could recommend optimal visual encodings based
on dataset characteristics such as dimensionality, data types, and statistical
properties [29]. However, the reliance on labeled training data limited their



adaptability to evolving contexts and novel datasets [30, 27]. This limita-
tion highlighted the importance of developing systems capable of generalizing
across diverse analytical scenarios while minimizing dependence on extensive
training resources.

Recently, the emergence of large language models (LLMs) [31) B2] has
fundamentally transformed Data2Vis by enabling natural language (NL) in-
teractions [33]. These models allow users to articulate analytical intentions
in plain language (e.g., “Show sales trends by region”) and then generate con-
textually appropriate visuals. Building on this foundation, advanced LLMs
demonstrate greater adaptability, enabling users to focus more on hypothe-
sis formulation and less on technical implementation [34], 35l 36, 37, B38]. By
combining LLMs with Data2Vis, these tools enable users to move seamlessly
from data to visualization, simplifying the visual design process and making
it accessible to the general public.

For RQ2, the evolution of Vis2Insight follows a parallel trajectory. Early
systems adopted rule-based methods grounded in established visualization
theory and perceptual principles [20} 21, 22]. By encoding domain knowledge
into deterministic rules, these systems could reliably identify fundamental
chart components (e.g., axes, legends) and detect statistical patterns (e.g.,
correlations, outliers) through predefined analytical templates [39]. How-
ever, rule-based methods exhibited significant limitations when confronted
with novel visualization formats or complex data patterns that exceeded the
scope of predefined rules. These limitations became particularly apparent
as visualization practices diversified across disciplines and data complexity
increased in real-world analytical scenarios, constraining analytical flexibility
and thus motivating the development of more adaptive methods.

As computer vision and ML techniques developed, learning-based meth-
ods emerged as a powerful tool for Vis2Insight applications. These data-
driven methods overcame many limitations of rule-based systems by au-
tomatically learning to extract insights from visualization through expo-
sure to annotated training examples. The field progressed significantly with
the adoption of Deep Learning(DL) [40, 41] and Reinforcement Learning
(RL) [42], achieving greater flexibility and broader applicability. However,
learning-based methods introduced new challenges. For example, the perfor-
mance of learning-based methods was found to be particularly dependent on
the quality and diversity of annotated training data, with specialized archi-
tectures often required for different chart genres and analytical tasks [43)], [44],
highlighting the need for more generalizable and interpretable methods.
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More recently, the development of multimodal large language models
(MLLMs) [45], 46] provides a unified and powerful method to overcome the
above challenges. These models integrate textual and visual reasoning capa-
bilities, enabling holistic comprehension of complex datasets and visualiza-
tions. For example, MLLMs align textual and visual modalities to support
a wide range of tasks, including anomaly detection, chart-based question an-
swering, and hypothesis generation [47, 48, [49] (50} [51), 52], 53], (54] [55]. These
systems not only answer questions but also proactively propose hypotheses,
enabling collaboration between human and computer in Vis2Insight [55], 56].

Specifically, the integration of LLMs and MLLMs has simplified the en-
tire visual insight mining pipeline. While LLMs facilitate transforming NL
into code or visualization specifications [34] [36] [57], multimodal agents allow
users to fluidly navigate between exploration, visualization, and interpreta-
tion [45], 58]. Emerging tools further enhance accessibility, enabling users to
guide analysis through intuitive interactions like sketches or conversational
agents [59]. As these technologies continue to evolve, they promise to trans-
form visual insight mining into a universally accessible practice.

1.3. Paper Organization

In this survey, we aim to investigate and report on different methodologies
for mining insights through visualization. The remaining chapters of this sur-
vey are organized as follows: Chapter [2 introduces the definition of concepts,
reviews related surveys, and presents the taxonomy of visual insight mining.
Chapter [3| focuses on the Data2Vis stage of visual insight mining, which en-
compasses three key tasks: task decomposition, visualization generation, and
visualization recommendation. We discuss the methodologies and techniques
used in rule-based, learning-based, and large-model-based methods to effec-
tively transform raw data into meaningful visualizations. Chapter || delves
into the Vis2Insight stage of visual insight mining, which includes three key
tasks: chart parsing, chart question answering, and insight generation. We
explore the methodologies and techniques used in rule-based, learning-based,
and large-model-based methods to extract actionable insights from visualiza-
tions. Chapter |5| discusses research challenges and opportunities in the field
of visual insight mining, highlighting areas that require further exploration
and development. Finally, Chapter [6] concludes the survey by emphasizing
the crucial role of visualization as a medium between data and insights. By
combining historical context with cutting-edge innovations, we aim to provide
a comprehensive foundation for future research in visual insight mining.



2. Preliminaries

In this section, we lay the groundwork for our study by introducing key
definitions, reviewing related surveys, and presenting a taxonomy of visual
insight mining.

2.1. Definition of Concepts

We begin with formally defining the three phases and six tasks that will
be used throughout this paper.

2.1.1. Three Phases of Visual Insight Mining

In Figure [1], the visual insight mining pipeline bridges the gap between
raw data and meaningful insight through intuitive visualization, encompass-
ing three key phases: Data Transformation, Visual Mapping, and Insight
Derivation. This pipeline transforms quantitative information into human-
interpretable insights, with each stage influencing the effectiveness of sub-
sequent steps. Beginning with raw data, the Data Transformation phase
first transforms raw data into initial statistical results. The subsequent Vi-
sual Mapping phase generates visualization that effectively reveals patterns
and relationships within statistical results. Finally, the Insight Derivation
phase applies analytical techniques to extract meaningful knowledge from
the visualizations.  Notably, while the Data Transformation phase covers
a substantial body of research, often involving statistical analysis and data
preprocessing, our scope is dedicated to the visual aspects of insight mining.
Consequently, our review primarily focuses on the processes of Visual Map-
ping and Insight Derivation, examining how visualizations are constructed
and how insights are subsequently derived from them. Work within the Data
Transformation phase falls outside the purview of this survey. Below are
the definitions of three phases.

e Data Transformation is the process of converting raw data into
a structured format, aiming to bridge the gap between initial data
and the organized data statistic [60]. This conversion makes the data
more suitable for accurate statistical analysis, enabling the derivation of
meaningful insights and reliable calculations like averages, frequencies,
and correlations.

e Visual Mapping [20] refers to the systematic transformation of data
statistics into visualization such as charts, graphs, and dashboards.
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The goal of visual mapping is to present complex data relationships
and patterns in an intuitive manner, making them easier to understand
and interpret [21I]. Through visualization, analysts can more effectively
identify outliers, trends, and correlations in the data.

e Insight Derivation involves the extraction of valuable insights and
conclusions from visualization, which is guided by domain expertise
and analytical reasoning [61]. Moving beyond data transformation, in-
sight derivation addresses the “why” and “how” behind observed phe-
nomena, tests hypotheses, and generalizes findings to broader contexts.
The purpose of insight derivation is to discover the deeper meanings
and business value behind the data by analyzing and interpreting the
visualizations. These insights can help decision-makers make more in-
formed decisions, optimize business processes, or uncover new business
opportunities.

By leveraging human’s superior pattern recognition capabilities, visual-
ization enables more efficient discovery of meaningful patterns compared to
numerical analysis alone. This perceptual advantage makes it essential for
deriving meaningful insights from modern, multidimensional datasets. Nev-
ertheless, the concept of visualization can be diverse. Below, we give the
formal definition of visualization within the scope of this work.

Visualization is the representation of information or data through
common visual elements, such as charts, graphs, maps, and anima-
tions [9, [10] [62] [63], often enhanced with interactive capabilities to sup-
port dynamic exploration [64], 65].

\ J

As a critical component of visual insight mining, visualization enables
data analysts to directly observe, interact with, and understand complex
datasets more effectively than mere numerical representations [10], [66]. By
presenting data visually, trends and outliers become apparent immediately,
creating quicker understanding and more efficient communication of key find-
ings. This aligns with Ben Shneiderman’s principle that “The purpose of
visualization is insight, not pictures.”- emphasizing that visual representa-
tions are not final results, but powerful tools for insight mining [67]. Indeed,
compared to conventional spreadsheet analysis, the cognitive efficiency of vi-
sual processing enables analysts to extract meaningful knowledge from mul-
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tidimensional datasets with greater speed and accuracy! [68], significantly
enhancing Insight Mining and ultimately bridging the gap between data and
true understanding.

2.1.2. SubTasks

The Visual Mapping phase includes three key tasks: Task Decompo-
sition, Visualization Generation, and Visualization Recommendation. Al-
though there might be some internal overlap among these tasks, they are
designed to progress linearly, each contributing to the next in a sequential
manner: Task Decomposition helps understand user requirements, Visual-
ization Generation creates charts based on these needs, and Visualization
Recommendation further refines chart selection and design.

e Task Decomposition refers to the process of breaking down a com-
plex task into smaller, more manageable subtasks [69) [70]. These sub-
tasks are defined with specific objectives, inputs, and outputs, and they
can be addressed individually. This process involves identifying the key
components and steps required to achieve a larger goal, and organizing
them in a way that facilitates more efficient and effective execution [71].
Task decomposition is necessary for simplifying the overall task and im-
proving overall task performance.

o Visualization Generation is the process of creating visual represen-
tations of data to facilitate the understanding and communication of
information. This process involves interpreting user inputs, which can
be in the form of NL queries or other specifications, and transforming
these inputs into appropriate visual encodings such as charts, graphs,
and infographics [28], 35]. The goal is to accurately capture user in-
tents and map them to suitable visualizations that effectively convey
the underlying data patterns and insights [34], 38].

e Visualization Recommendation refers to the process of suggesting
appropriate visual representations for data based on the characteristics
of the data and the user’s analysis goals [72]. This involves evaluating
various visualization options and selecting those that best convey the
information, highlight key insights, and support effective data explo-
ration [29]. Visualization recommendation systems aim to reduce the
effort required to manually specify visualizations [72], providing users



with a range of suitable visualizations that enhance their understanding
and analysis of the data [73].

The Insight Derivation phase involves Chart Parsing, Chart Question
Answering (CQA), and Insight Generation. Similarly, while these tasks might
have internal overlaps, our main consideration is this linear development,
where each task sets the stage for the subsequent one, ensuring a coherent
and structured approach from data visualization to the generation of insights.

e Chart Parsing refers to the process of extracting visual elements,
textual information, and underlying data from a chart and converting
them into structured data or text descriptions [74, 53]. This pro-
cess usually involves identifying key components of the chart, such as
graphical marks (e.g., bars in a bar chart, lines in a line chart, or
slices in a pie chart), their properties (e.g., position, size, color), and
associated text labels (e.g., titles, axis labels, legends) [75]. The goal
of chart parsing is to convert the visual representation of data into a
structured format that can be easily understood and processed by ma-
chines, facilitating downstream tasks such as data analysis, visualiza-
tion redesign, natural language description generation, and knowledge
graph construction [74) [76], [77].

e Chart Question Answering is a task that involves automatically
extracting and interpreting key information from charts to answer ques-
tions posed in NL [43] [44] [78]. Tt requires the ability to comprehend
complex NL queries, recognize and interpret visual elements within the
charts, and perform logical and arithmetic reasoning to derive accurate
answers [79]. The input typically consists of an image of a chart and
a query, while the output is an answer string that addresses the query
based on the information contained in the chart.

e Insight Generation refers to the process of uncovering meaningful,
actionable information or patterns within visualization through vari-
ous analytical methods and techniques [I5], 61]. This process can be
facilitated by systems and frameworks that automate and enhance the
exploration of visualization, providing users with relevant and signifi-
cant insights in an effective manner [15], 80].



2.2. Related Surveys

The field of Visual Insight Mining has seen significant advancements
through the integration of artificial intelligence (AI) and ML techniques.
Recent surveys such as ML4VIS [60], AI4VIS [81], and GenAI4VIS [82] have
systematically investigated the application of these techniques across various
visualization processes.

MLA4VIS [60] systematically explores how ML techniques can enhance dif-
ferent stages of the visualization pipeline, both the Data2Vis and Vis2Insight
phases. For Data2Vis, the survey highlights key ML-assisted tasks, such as
Data-VIS Mapping, which automates chart type selection and visual encod-
ing. For Vis2Insight, it discusses processes like VIS Reading (extracting
and interpreting visual content) and Insight Communication (embedding in-
sights into visualizations). While the ML4VIS pipeline effectively bridges
these stages, the survey offers a macro-level analysis of specific tasks without
deeper exploration, such as chart question answering. Our work addresses
this gap by providing a detailed classification and comprehensive discussion
of this task.

AT4VIS [R1] surveys the emerging field of AI4VIS, defining visualization
data as digital representations in formats such as graphics, programs, or
hybrids. Their work explores how Al techniques process, analyze, and gen-
erate such data through feature engineering, feature learning, and internal
representations. The authors further split the process into seven core tasks.
While their focus is primarily on visualization operations and targets, our
work takes a broader perspective by examining the entire pipeline from data
to insight through visualization.

Ye et al. [82] presented a comprehensive survey on the use of genera-
tive Al (GenAl) in visualization, categorizing generative methods by data
structures (e.g., sequences, tables, graphs, and spatial formats) and aligning
them with visualization-specific tasks including data enhancement, visual
mapping, stylization, and interaction. Their work adapts the classical vi-
sualization pipeline to reflect the broader capabilities of GenAl, offering a
structured perspective on how generative techniques contribute to various
stages of the visualization process. Unlike their focus on GenAl, our survey
examines a broader range of methods, including rule-based, learning-based,
and LM-based approaches, rather than solely GenAl-driven techniques.
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2.3. Taxonomy

As Table [1] illustrates, in this work, we delve into two primary stages:
Data2Vis and Vis2Insight in visual insight mining. The Data2Vis stage
encompasses three key tasks: Task Decomposition, Visualization Genera-
tion, and Visualization Recommendation. Similarly, the Vis2Insight stage
comprises three tasks: Chart Parsing, CQA, and Insight Generation. For
each of these six tasks, we explore various approaches, including rule-based,
learning-based, and large model-based , to achieve the desired outcomes. This
taxonomy offers a clear and concise framework for understanding the diverse
methods employed in various visual insight mining tasks.

Table 1: Taxonomy with examples.

Data2Vis Vis2Insight
Task Vis. Vis. Chart CQA Insight
Decomp. Generation Recomm. Parsing Generation
li:ifi NL4DV [69] NL4DV [69], Mackinlay [23], Poco et al. [89], Kim et al. [90], Foresight [39],
Calliope [83], Voyager [86], ChartKG [77] Hoque et al. [78] Zeng et al. [91],
AutoPro- Com- Vertsel et
filer [84], Diff in passQL [87], al. [92]
the loop [85] Seedb [72],
TaskVis [88]
Learning Data2Vis [28], ReVision [76],  Kafle et al. [97], )
based  Talk2Data [93]  ADVISor [g4), DeepEve B5],  ChartSense [75], PlotQA [@3), ~ InkSight [59],
DashBot [30] VizML [29], AutoCap- ChartQA [4]  Kim et al. [0,
Data2Vis [28],  (ion [74], DashBot [30],
ML4VIS [60], Chart-to- Foresight [39]
KG4Vis [27) Text [53],
ChartReader [96],
ChartKG [77]
bii\:d AI Chains [70], Chat2VIS [34], LLM4Vis [36], Liew et al. [103], Zeng et .
LightVA [71], LIDA [35], DracoGPT [101], Pix2Struct [104), al. [105), InkSight [59],
FinFlier [98], DashChat [99], Prompt4Vis [[02) MATCHA [79) MATCHA [79], AutoTitle [106],
DashChat [99]  ChartGPT [38], AskChart [47],  VisTR [107],
Li et al. [100] Chart- LEVA [61],
Bench [49], InsightLens [80],
ChartAssis- InsightPi-
tant [55] lot [3),
: ChartIn-
sighter [54]

3. Data2Vis

Data2Vis focuses on the automated transformation of raw data into mean-
ingful visual representations, which is a critical process in visual insight min-
ing. This section is structured into three key subsections, including Task
Decomposition, Visualization Generation, and Visualization Recommenda-
tion, to systematically review how related systems can facilitate converting
data into effective visualizations.
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3.1. Task Decomposition

Task decomposition transforms complex queries into simpler, actionable
tasks to enhance problem-solving efficiency, building foundations for future
steps. Various approaches have been explored to achieve this, including rule-
based, learning-based, and large-model-based methods, each offering unique
advantages and challenges.

3.1.1. Rule-based Approaches for Task Decomposition

Rule-based methods for task decomposition involve using predefined rules
and heuristics to break down complex tasks into simpler subtasks. These
methods are deterministic and rely on explicit, handcrafted rules that cap-
ture the structure and semantics of the tasks. Rule-based methods are partic-
ularly useful when the task structure is well-understood and can be explicitly
defined. They are often preferred for their transparency and interpretability,
as the rules can be easily understood and modified by humans.

NL4DV [69] employs predefined rules and patterns to interpret NL queries
for data visualization, breaking down the queries into components such as
data attributes, analytic tasks, and visualization types. For example, it
identifies keywords in the query that correspond to specific tasks like ”corre-
lation” or ”distribution”. This structured decomposition allows the system
to further generate appropriate visualizations based on the inferred tasks and
attributes from the query.

3.1.2. Learning-based Methods for Task Decomposition

Learning-based methods for task decomposition leverage the power of
ML or DL to automatically identify and separate tasks into subtasks, often
optimizing for specific objectives such as efficiency, accuracy, or adaptability.

To address the challenge of complex questions in exploratory visual analy-
sis, Talk2Data [93] proposes a novel approach that leverages DL to decompose
intricate queries into simpler, more manageable sub-questions. It extends the
classic sequence-to-sequence architecture with a question type classifier, de-
composition layer, attention mechanism, and copying mechanism as shown
in Figure |2l This allows the system to effectively handle complex queries by
simplifying them into a series of straightforward tasks, which can be individ-
ually addressed.
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Figure 2: The decomposition mechanism of Talk2Data [03].  (Extracted from
Talk2Data [93])

3.1.3. Large-model-based Techniques for Task Decomposition

Recent advancements in LLMs have significantly enhanced the capabili-
ties of Al systems to tackle complex tasks through task decomposition. These
methods leverage the inherent reasoning and generative abilities of LLMs to
break down intricate problems into manageable subtasks, thereby improving
the efficiency and effectiveness of problem-solving processes.

Wu et al. [70] introduced the concept of “Chaining”, where complex tasks
are decomposed into a series of smaller, more manageable subtasks that are
processed sequentially by LLMs. In the case of visualization code debug-
ging, each step in the Chain focuses on a specific subtask, such as rewriting
Vega-Lite specifications into NL, validating design constraints, and generat-
ing fixes. This modular approach not only improves the quality and trans-
parency of the visualization workflow but also enhances the model’s control-
lability and debuggability, making it easier to identify and correct errors in
the visualization workflow.

As shown in Figure [3] LightVA [7I] presents a lightweight visual ana-
lytics (VA) framework that employs LLM agents for task planning and ex-
ecution. It uses a recursive process with a planner, executor, and controller
to dynamically handle task complexity. The planner decomposes tasks into
smaller subtasks, the executor manages task execution (including visualiza-
tion generation and data analysis), and the controller oversees the entire
process. This decomposition approach makes the development and use of
VA systems more controllable and transparent.

FinFlier [98] breaks down the complex task of generating graphical over-
lays for financial visualizations into two main subtasks: text-data binding and
graphics overlaying. The text-data binding module uses advanced prompt en-
gineering techniques (such as output constraint, CoT, and dynamic prompt)
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Figure 3: The conceptual framework of LightVA [71]. (Extracted from LightVA [71])

and a financial domain knowledge-grounded LLM to establish a robust con-
nection between financial vocabulary in the text and data points in the table.
The graphics overlaying module then generates effective graphical overlays
based on the output from the text-data binding module, considering nar-
rative sequencing and the correspondence between graphical overlays and
financial narratives. This decomposition approach enables FinFlier to effi-
ciently handle complex financial narratives and data, improving the efficiency
and accuracy of generating graphical overlays for financial visualizations.

DashChat [99] system utilizes a powerful LLM to transform users’ NL
inputs into specific visualization tasks. By employing a JSON-style domain-
specific language, the system ensures that the LLM’s outputs are structured
and aligned with user requirements, effectively breaking down vague descrip-
tions into actionable tasks for subsequent visualization generation. This ap-
proach not only enhances the accuracy of task interpretation but also im-
proves the overall efficiency of creating dashboard prototypes.

In summary, large-model-based techniques for task decomposition have
made significant progress in enabling Al systems to handle complex tasks.
Each of them offers unique approaches to breaking down tasks into man-
ageable subtasks, thereby improving the transparency, controllability, and
efficiency of Al-driven problem-solving.

3.2. Visualization Generation
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Visualization Generation explores techniques for automatically creating
visualizations based on structured tasks, leveraging computational and design
principles.

3.2.1. Rule-based Approaches for Visualization Generation

Rule-based approaches for visualization generation rely on predefined
rules and guidelines to automatically create visual representations from data.
These methods are designed to map data attributes and user tasks to appro-
priate visualization types and encodings based on established visualization
principles. By following these rules, visualization systems can generate ef-
fective and contextually relevant visualizations without requiring extensive
user input or customization. This approach is particularly useful in scenarios
where rapid and accurate visualization generation is needed.

NL4DV [69] employs rule-based methods to map detected data attributes
and tasks inferred from NL queries to relevant visualizations. Specifically,
the toolkit uses predefined rules to determine the most suitable visualiza-
tion types and encodings based on the identified elements. For example, if
the query specifies a correlation task between two quantitative attributes,
NL4DV’s map it to scatterplots. These rules ensure that NL4DV generates
visualizations aligned with both the data characteristics and the user’s intent
expressed in the query.

Several systems investigate how to automatically generate visual repre-
sentations of data based on predefined rules.  Specifically, Calliope [83]
introduces a system that automatically generates visual data stories from
spreadsheets. The system defines a set of data fact types and corresponding
visualization rules. These rules are based on empirical data and design guide-
lines to ensure that the visualizations are effective and easy to understand.
For instance, a “trend” fact type is visualized using a line chart, while a “dis-
tribution” fact type is represented by a bar chart. These rules allow Calliope
to automatically generate coherent and meaningful data stories, where each
one is accompanied by an appropriately chosen visualization.  Similarly,
AutoProfiler [84] aims to generate visual summaries of data. The system
automatically detects the data type of each column (e.g., numeric, categori-
cal, temporal) and applies predefined rules to visualize the data distribution
and summary statistics, so that data scientists can quickly understand their
data through visualization.

In contrast, Diff in the loop [85] introduces a method for visualizing dif-
ferences in datasets during exploratory data analysis. The system identifies
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correspondences between data points in the original and modified datasets
and applies predefined rules to render these differences in various visualiza-
tion views, such as parallel view, opacity view, and delta view. These views
are designed to highlight changes in data distributions and summary statis-
tics, providing data scientists with a clear understanding of the impact of
their code modifications on the data.

3.2.2. Learning-based Methods for Visualization Generation

Learning-based methods for visualization generation leverage ML mod-
els to capture patterns and relationships within datasets and automatically
generate visualizations that are both meaningful and contextually relevant.

Building on the foundation of DeepEye, subsequent research has explored
more sophisticated ML models to enhance visualization generation. For ex-
ample, Data2Vis [2§] formulates visualization design as a language transla-
tion problem, where data specifications are mapped to visualization specifica-
tions in a declarative language (Vega-Lite). As shown in Figure |5, Data2Vis
trains a multilayered attention-based encoder-decoder network with long
short-term memory (LSTM) units on a corpus of visualization specifications.
This approach allows the model to learn the vocabulary and syntax for valid
visualization specifications, appropriate transformations, and common data
selection patterns. Data2Vis demonstrates the efficacy of bidirectional mod-
els with attention mechanisms for generating visualizations that are compa-
rable to manually created ones in a fraction of the time.

ADVISor [94] leverages DL models to interpret NL questions and generate
corresponding visualizations. Specifically, it utilizes a pre-trained language
model like BERT to encode the semantics of the questions and table headers,
which helps in understanding the user’s intent and selecting the relevant
data attributes. Based on the parsed information, the system dynamically
chooses appropriate visualization types (e.g., bar charts, line charts, scatter
plots) and generates visualizations with annotations to highlight the answers.
This approach enables the system to handle a wide range of NL queries and
produce meaningful visualizations that aid in data exploration and analysis.

Further, DashBot [30] introduces a deep reinforcement learning frame-
work to generate analytical dashboards, addressing the complexity of creating
effective dashboards that require both data analysis expertise and familiar-
ity with professional tools. The model formulates dashboard generation as
a Markov decision process, where agents explore the design space by taking
actions such as adding or removing charts and configuring chart parame-
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ters. DashBot uses an asynchronous advantage actor-critic (A3C) algorithm
to train agents, incorporating reward functions that evaluate the expressive-
ness, insightfulness, and diversity of generated dashboards. Its effectiveness
is demonstrated through ablation studies and user studies, showing its ability
to generate high-quality dashboards that are understandable, insightful, and
aesthetically pleasing.

3.2.3. Large-model-based Techniques for Visualization Generation

With the development of LLMs, the field of visualization generation has
seen significant advancements. These advancements leverage the strengths
of LLMs to bridge the gap between natural language and data visualization,
making the creation of insightful visualizations more accessible and efficient
for a broader audience.

Chat2VIS [34] marks the initial efforts in this domain, which introduces
the use of LLMs like GPT-3 and Codex to directly convert NL queries into
executable Python code for generating visualizations. This approach not only
streamlines the process but also reduces the complexity and cost associated
with developing natural language interfaces (NLIs) for visualization.

Building on this foundation, LIDA [35] presents a more comprehensive
tool that frames visualization generation as a multi-stage task. By integrat-
ing LLMs with image generation models, LIDA expands the scope of au-
tomated visualization creation to include both charts and infographics. Its
modular design, consisting of SUMMARIZER, GOAL EXPLORER, VIS-
GENERATOR, and INFOGRAPHER, enables a more structured way to
generate visual representations.  Similarly, DashChat [99] leverages LLMs
to create industrial dashboard prototypes. After decomposing user require-
ments into specific tasks, it uses LLMs to select appropriate chart types
(mapping visualization fields such as axes and color encodings) and simulate
data as realistic as possible, ensuring that the visualizations are meaningful
and aligned with user intents. The integration of LLMs enables DashChat to
produce high-quality, contextually appropriate visualizations efficiently, even
without access to real datasets.

To address the challenges of specifying complex parameters, ChartGPT [3§]
further decomposes the visualization generation process into a step-by-step
reasoning pipeline (as shown in Figure . This solution enables ChartGPT
to focus on solving one specific step at a time, thereby improving the accu-
racy and reliability of the generated visualizations. ChartGPT’s innovation
also includes the creation of a dataset of abstract utterances and correspond-
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Figure 4: ChartGPT [38] decomposes the visualization generation process into three steps
(4, 5, and 6). (Extracted from ChartGPT [38])

ing charts. The dataset is used to fine-tune the LLM, further enhancing its
performance in generating visualizations from ambiguous or underspecified
NL inputs.

More recently, Li et al. [I00] provided deeper insights into the capabilities
and limitations of LLMs in generating visualization specifications. Their eval-
uation using GPT-3.5 on the nvBench dataset demonstrates that few-shot
prompting strategies significantly outperform zero-shot strategies, highlight-
ing the importance of providing examples to guide the model. This study
also underscores the need for LLMs to understand Vega-Lite grammar and
task descriptions better, suggesting future directions for improving both the
models and the benchmark datasets.

3.3. Visualization Recommendation

Visualization Recommendation discusses intelligent systems that suggest
optimal visualizations by considering data attributes, user preferences, and
contextual constraints.

3.3.1. Rule-based Approaches for Visualization Recommendation
Rule-based methods for visualization recommendation have evolved sig-
nificantly over the years, driven by the need to automate the process of
generating effective and insightful visualizations. These methods rely on
predefined rules and constraints to rank and select visualizations based on
various factors such as data types, user tasks, and perceptual effectiveness.
Mackinlay [23] proposed APT (A Presentation Tool), which serves as
the foundation of rule-based visualization recommendation. APT uses a
set of predefined rules to prune and rank visual encodings based on their
expressiveness and effectiveness. This approach ensures that the generated
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visualizations convey all the facts in the data and are easily perceived by
users. Moreover, APT is notable for its flexibility and adaptability, allowing
designers to incorporate new rules and refine existing ones to improve the
quality of recommended visualizations.

Building on APT, subsequent systems further refine the rule-based ap-
proaches. For instance, Voyager [86] introduces a mixed-initiative system
that combines user input with automated recommendations, enabling users
to explore different visualizations through faceted browsing. Its recommenda-
tion engine, Compass, uses a set of rules to generate and rank visualizations
based on data properties and user tasks. In this way, Voyager not only en-
hances the relevance of recommended visualizations but also provides users
with more control over the recommendation process.

CompassQL [87], another significant development in rule-based approaches,
formalizes visualization design knowledge as constraints and uses Answer Set
Programming (ASP) to solve these constraints. This approach allows for a
more systematic and extensible representation of design knowledge, enabling
the integration of various empirical studies and best practices. CompassQL’s
ability to learn weights for soft constraints from experimental data further
enhances its flexibility and adaptability, allowing it to incorporate new find-
ings and preferences into the recommendation process.

Seedb [72] represents a practical application of rule-based methods in
the context of data-driven visualization recommendations. Seedb uses a
deviation-based metric to evaluate the utility of visualizations, identifying
those that show significant deviations from a reference dataset as potentially
interesting. This metric is encoded as a rule within the system, guiding the
selection of visualizations that highlight notable trends or anomalies in the
data. Seedb’s approach is particularly effective in high-dimensional datasets
where manual exploration is impractical, making it a valuable tool for rapid
visual analysis.

TaskVis [88] shows a more recent advancement in rule-based visualization
recommendation. TaskVis focuses on task-oriented visualization recommen-
dations by modeling user analysis tasks in detail. It maintains a task base
that includes 18 classical low-level analysis tasks and their appropriate chart
types, and uses a rule base to extend empirical wisdom with targeted model-
ing of analysis tasks. Further, TaskVis employs ASP to enumerate candidate
visualizations and supports multiple ranking schemes based on chart com-
plexity, user interest, and task coverage. This approach ensures that the
recommended visualizations are not only effective but also closely aligned
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with the user’s specific analysis tasks.

3.3.2. Learning-based Methods for Visualization Recommendation

Learning-based methods leverage ML models to learn visualization design
principles directly from data, offering a more scalable and adaptable solution.

DeepEye [95] introduces a novel system for automatic data visualization
that uses learning-based methods to recommend visualizations. It addresses
three key problems: recognizing whether a visualization is good or bad using
a binary classifier, ranking visualizations using a supervised learning-to-rank
model, and selecting the top-k visualizations from a dataset. These learning-
based methods help capture human perception of what makes a visualization
effective and enable the system to automatically recommend compelling vi-
sualizations for a given dataset.

VizML [29] leverages a large corpus of datasets and associated visual-
izations to train ML models for visualization recommendation. The system
identifies key design choices made during visualization creation, such as se-
lecting visualization types and encoding data columns along specific axes.
Then, it employs neural networks to predict these design choices, achieving
high accuracy compared to baseline models. VizML also evaluates feature
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importances, providing insights into the contribution of different data fea-
tures to visualization effectiveness. The model’s generalizability is assessed
through crowdsourced benchmarking, where it performs comparably to hu-
man users and outperforms other visualization recommendation systems.

Data2Vis [28] proposes another innovative method to effectively recom-
mend visualizations, which translates data specifications into visualization
specifications using a sequence-to-sequence recurrent neural network model,
as depicted in Figure[5] Trained on a corpus of Vega-Lite visualization spec-
ifications, the model learns common patterns and best practices in visual-
ization design, which it uses to recommend the most suitable visualizations
for a given dataset. By learning the vocabulary and syntax of valid visu-
alization specifications, the model suggests visualizations that are not only
syntactically correct but also semantically meaningful.

MLA4VIS [60] provides a comprehensive overview of how ML techniques
are being utilized to enhance visualization recommendations. The survey
emphasizes the importance of ML in automating visualization recommenda-
tion, which can help users, especially those without extensive visualization
expertise, to quickly identify the most appropriate visual representations for
their data. It highlights that ML models can learn from large datasets of
existing visualizations to understand patterns and best practices, thereby
enabling the recommendation of suitable visualization types and configura-
tions for new datasets. Additionally, the paper discusses the potential of ML
to personalize visualization recommendations based on user preferences and
interaction history, further enhancing the user experience. By mapping out
the current landscape of ML applications in visualization recommendation,
the survey offers valuable insights for researchers and practitioners looking
to leverage ML for more effective and user-friendly visualization tools.

Further, KG4Vis [27] proposes a knowledge graph (KG)-based method
for visualization recommendation, addressing the limitations of traditional
ML approaches. It constructs a KG comprising entities such as data fea-
tures, data columns, and visualization design choices, and the relationships
between them. The model uses TransE-based embedding techniques to learn
the embeddings of entities and relations from existing dataset-visualization
pairs. These embeddings capture the underlying visualization rules, enabling
the model to infer effective visualizations for new datasets. KG4Vis not only
recommends visualizations but also generates explainable rules, enhancing
user trust and understanding. The approach is evaluated through quanti-
tative comparisons, case studies, and expert interviews, demonstrating its
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effectiveness and interpretability.

3.3.3. Large-model-based Techniques for Visualization Recommendation

With the advent of LLMs like ChatGPT [108, 109] and GPT-4 [31], 109,
33, [110], large-model-based methods for visualization recommendation have
shown substantial progress, leveraging the capabilities of LLMs to provide
more intuitive, accurate, and user-friendly visualization suggestions. These
models leverage in-context learning to perform complex tasks without exten-
sive supervised training, making them promising candidates for visualization
recommendation.

LLM4Vis [36] focuses on using LLMs to generate visualization recom-
mendations directly from NL queries. This approach eliminates the need
for users to have in-depth knowledge of visualization tools and languages.
Specifically, LLM4Vis provides an NLI for users to describe their visualiza-
tion needs, in which LLMs process these queries and translate them into
visualization specifications. Further, by leveraging the vast knowledge and
training data of LLMs, LLM4Vis can generalize well across different datasets
and user queries, offering robust and flexible visualization recommendations.
Moreover, LLM4Vis supports interactive feedback, allowing users to refine
their queries and receive updated recommendations iteratively.

To further enhance the capabilities of LLMs, DracoGPT [I01] incorpo-
rates additional techniques such as the Draco framework [IT1] to provide
higher-quality visualization suggestions.  Draco, originally designed as a
constraint-based system for automated visualization design, models visualiza-
tion design knowledge using constraints and associated weights. DracoGPT
extends this by incorporating the power of LLMs to generate more nuanced
and contextually relevant visualization suggestions. This integration allows
the system to interpret user queries more effectively and generate visualiza-
tion recommendations that are not only syntactically correct but also seman-
tically aligned with user intent. Additionally, DracoGPT learns preferences
from experimental data, enabling it to adapt to different user needs and data
characteristics.

Prompt4Vis [102] represents the latest advancement in large-model-based
techniques for visualization recommendation. To improve the accuracy and
relevance of visualization recommendations, Prompt4Vis introduces a novel
framework that enhances the performance of LLMs in generating data visual-
izations by using example mining and schema filtering. The multi-objective
example mining module selects the most effective examples for in-context

22



learning, considering similarity, influence, and diversity to ensure that the
LLM receives high-quality and relevant context. Additionally, the schema fil-
tering module simplifies the database schema, reducing irrelevant information
and improving the LLM’s ability to generate more accurate visualizations.
Extensive experiments demonstrate that Prompt4Vis significantly outper-
forms previous state-of-the-art methods, achieving substantial improvements
in accuracy.

4. Vis2Insight

Vis2Insight explores the process of extracting meaningful knowledge from
visualizations, bridging the gap between visual representation and human un-
derstanding. This section is organized into three core subsections, including
Chart Parsing, Chart Question Answering, and Insight Generation, to sys-
tematically address how machines parse, interpret, and derive insights from
visual data. Together, these subsections provide a comprehensive framework
of how related systems transform visualizations into actionable insights, en-
abling deeper visual understanding.

4.1. Chart Parsing

Chart Parsing examines techniques for decomposing visualizations into
structured representations, further enabling information extraction.

4.1.1. Rule-based Approaches for Chart Parsing

Rule-based methods have been consistently applied in chart parsing to
establish relationships between visual elements and data values, infer chart
properties, and classify text roles. These methods provide a structured and
interpretable approach to extracting meaningful information from chart im-
ages, enabling various downstream applications such as knowledge graph
construction, data extraction, and visualization redesign.

Poco et al. [89] employed heuristic rules to enhance the accuracy and
reliability of chart parsing. Specifically, a set of rules is applied to the output
of SVM to correct and optimize the classification of text elements’ roles,
thereby significantly enhancing the accuracy of text role classification. Also,
rules are employed to parse axis or legend label text to determine whether
the data is quantitative or nominal, laying the groundwork for subsequent
chart specification generation.
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In ChartKG [77], predefined rules play a crucial role in constructing a
structured knowledge graph of a chart. A total of four relationships are
defined and constructed by rules to ensure that the knowledge graph can
accurately capture the semantic information in the chart. Specifically, vi-
sual property correspondences are created by linking visual elements to their
property values, such as connecting a bar to its height. Data variable corre-
spondences are formed by associating data variable values with their corre-
sponding variables. Visual encoding mappings are constructed by connecting
visual element property values to data variables or values based on similari-
ties, such as color or position. Visual insight correspondences are established
by linking visual insights to the relevant data variables or values. These rules
enable knowledge graphs to represent information in charts in a structured
and interpretable way, thereby supporting various downstream tasks such as
semantic-aware chart parsing and CQA.

4.1.2. Learning-based Methods for Chart Parsing

Learning-based methods have emerged as a powerful approach to address
the challenges of chart parsing, leveraging ML and DL techniques to im-
prove accuracy and efficiency. These methods have significantly advanced
the field by automating the classification of chart types and extraction of
visual elements from various types of charts.

ReVision [76] is a pioneering work that improves the automation of chart
parsing and redesign through ML methods. Specifically, Revision is imple-
mented in three stages. Firstly, Revision uses low-level image feature vectors
for classification via support vector machines (SVM). It then uses a combi-
nation of image processing and model fitting techniques to locate graphical
marks (visual elements that encode data) and extract underlying data tables
from charts. Finally, based on the extracted data, ReVision automatically
generates multiple redesigned charts, and users can select and compare dif-
ferent designs. With Revision, users can view the gallery of redesigned charts
and accordingly change design according to specific visual aesthetics.

Building upon this foundation, with the advent of DL, more sophisticated
methods have been proposed to handle the complexities of chart parsing.
One notable example is ChartSense [75], which integrates deep learning-
based classification with interactive data extraction algorithms. ChartSense
first classifies chart types based on convolutional neural network (CNN), and
then applies semiautomatic, interactive extraction algorithms optimized for
each chart type. This mixed-initiative approach combines the strengths of
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automatic mark extraction algorithms and user interactions to improve the
accuracy and efficiency of data extraction.

Both AutoCaption [74] and Chart-to-Text [53] leverage DL to generate
textual descriptions of charts, but they differ in their focus and approach.
While AutoCaption emphasizes the rapid generation of captions based on
visual elements and their relationships, Chart-to-Text focuses on generating
detailed summaries that capture the semantic content of the chart data. This
distinction highlights the versatility of learning-based methods in addressing
different aspects of chart parsing and user needs.

Most recently, researchers have aimed to develop unified frameworks that
can handle multiple chart types and tasks. For example, ChartReader [90]
integrates chart derendering and comprehension tasks using a transformer-
based chart component detection module and a pre-trained vision-language
model. The module can automatically learn chart rules from annotated
datasets, eliminating the need for manual rule-making. Specifically, the
Hourglass network is used to detect the center points and key points of
chart components and group them through a multi-head attention mecha-
nism. This approach enables the system to automatically identify and locate
various elements in a chart without relying on predefined rules. By employ-
ing learning-based methods, ChartReader not only improves the accuracy of
chart parsing but also reduces the manual effort involved in chart analysis.

ChartKG [77] represents the latest advancement in this domain, apply-
ing DL models to extract data from charts effectively before constructing
a knowledge graph. It first uses ResNet50 to classify the input chart and
determine the chart type (such as bar chart, line chart, etc.). For chart pars-
ing, ChartKG applies YOLOvV5 - a well-known object detection model with
remarkable accuracies and scalabilities - to detect elements in the chart (such
as bars in a bar chart, lines in a line chart, etc.). These deep learning-based
methods allow ChartKG to accurately identify and extract various elements
and their properties from different types of charts, providing a comprehensive
and structured representation of the chart’s visual and semantic information
for subsequent knowledge graph construction.

4.1.3. Large-model-based Techniques for Chart Parsing

With the advent of LLMs and vision-language models, chart parsing,
which involves extracting meaningful information from visual representations
such as bar charts, line charts, and pie charts, has seen significant advance-
ments. These models leverage the power of large-scale pretraining to improve
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the accuracy and generalizability of chart parsing tasks.

The journey begins with foundational work on generating NL. summaries
from charts. Chart-to-text [53] introduces a comprehensive benchmark to
evaluate the performance of neural models in this domain. This work high-
lights the potential of models like Chart2text and T5 in generating fluent
summaries, while also identifying key challenges such as factual errors and
hallucinations. This benchmark serves as the foundation of future research
by providing a large-scale dataset and setting the stage for more sophisticated
models to build upon.

Then, Liew et al. [I03] explored the capabilities of advanced language
models like GPT-3 in capturing image captions. They primarily focused
on prompt engineering, demonstrating that carefully crafted prompts can
significantly enhance the quality and engagement of generated captions. This
work underscores the importance of human interaction in guiding LLMs to
produce more meaningful and contextually relevant outputs.

Pix2Struct [104] is one of the pioneering models in this domain. It in-
troduces a novel pretraining strategy for visually-situated language tasks,
focusing on parsing masked screenshots of web pages into simplified HTML.
This approach allows the model to learn rich representations of textual and
visual elements, which could then be transferred to various downstream tasks.
Pix2Struct’s architecture includes a variable-resolution input representation,
which enables it to handle diverse input formats without distorting the orig-
inal aspect ratio. This flexibility is crucial for tasks involving documents,
illustrations, and user interfaces. In addition to its innovative pretraining
objective, Pix2Struct demonstrates state-of-the-art (SoTA) performance on
multiple benchmarks across different domains, setting a new standard for
general-purpose visually-situated language understanding. Building on the
foundation of Pix2Struct, MATCHA [79] incorporates the chart derendering
task into the pretraining process, which involves generating the underlying
data table or code used from a chart, improving the model’s ability to extract
numerical data from charts.

From the initial benchmarking and identification of challenges to the in-
novative use of prompt engineering, and culminating in the development of
unified frameworks and specialized pretraining techniques, each step has built
upon the previous one. This progression has not only improved the accuracy
and efficiency of chart parsing but also paved the way for more universal and
robust models capable of handling a wide range of chart-related tasks.

26



4.2. Chart Question Answering

Chart Question Answering is a complex task that involves interpreting
visual data from charts and graphs to answer NL queries. This task is particu-
larly challenging due to the need for both visual and linguistic understanding.

4.2.1. Rule-based Approaches for Chart Question Answering

This transformation allows the system to leverage existing table question
answering algorithms like Sempre [112, [I13] to generate accurate answers.

Kim et al. [90] developed an automatic pipeline for answering questions
about charts and generating visual explanations. The pipeline includes a
stage where it converts visual questions into non-visual questions using rules.
This involves detecting references to visual marks, attributes, and operations
in the question and replacing them with references to data fields and values
based on predefined rules and word lists. This rule-based conversion allows
the system to transform questions that refer to visual features of the chart
into a form that can be processed by ML algorithms.

Then, Hoque et al. [78] provided a comprehensive review of CQA systems.
It mentions that early approaches to NLI for visualizations often rely on
heuristic or grammar-based parsing techniques to handle questions about
charts. These rule-based systems typically involve defining a set of predefined
rules and patterns to match and interpret the NL queries. However, such
methods have limitations in handling complex and diverse questions due to
their reliance on predefined rules and lack of flexibility.

4.2.2. Learning-based Methods for Chart Question Answering

Recent advancements in the field of CQA have been driven by the integra-
tion of computer vision and natural language processing techniques. These
learning-based methods aim to automatically answer questions about data
visualizations such as bar charts, line graphs, and pie charts.

Once data is extracted from charts, the next challenge is to effectively
combine visual and linguistic features to answer questions. Kafle et al. [97]
introduced PReFIL, a novel algorithm that learns bimodal embeddings by
fusing question and image features. PReFIL then aggregates these embed-
dings to answer proposed questions. This approach significantly outperforms
SoTA systems on the FigureQA [114] and DVQA [115] datasets, demonstrat-
ing the effectiveness of the proposed bimodal fusion technique.
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Another significant challenge in CQA is dealing with out-of-vocabulary (OOV)

words and complex reasoning tasks. To address this challenge, PlotQA [43]
introduces a dataset with 28.9 million question-answer pairs over 224,377
plots, sourced from real-world data, and a hybrid model that combines visual
perception, OCR, and table-based reasoning to handle both fixed-vocabulary
and OOV questions. This model achieves SoTA results on both the DVQA
and PlotQA datasets, highlighting the importance of integrating multiple
techniques to handle diverse question types.

Instead of solely relying on charts, Masry et al. [116] performed CQA

by combining automatic data extraction from chart images with SoTA table
parsing models. Specifically, it uses computer vision techniques to recover
the underlying data from chart images and then applies the TAPAS model,
a BERT-based architecture, to parse the extracted data tables and generate
answers to questions about the charts. Compared to methods that treat
charts as regular images, this one leverages the unique structure of charts
to improve the accuracy of question answering, demonstrating significant
performance improvements on the FigureQA dataset.

Further, ChartQA [44] introduces a large-scale benchmark dataset for

CQA that requires both visual and logical reasoning. It proposes two transformer-
based models that combine visual features and the data table of the chart to
answer questions. These models achieve SoTA results on previous datasets

as well as on the new benchmark, demonstrating the potential of integrating
visual and tabular data for complex reasoning tasks in CQA.

4.2.3. Large-model-based Techniques for Chart Question Answering

CQA is a critical task in the field of multimodal understanding, aiming

to understand and reason about visual data to answer users’ queries. With
the advancements in LLMs and MLLMs, significant progress has been made
in this area. Techniques such as visualization-referenced instruction tuning,
math reasoning, and explicit integration of textual cues have been shown to
enhance model performance.

At the beginning, MATCHA [79] presents a method that enhances visual-

language models’ capabilities in CQA through math reasoning pretraining
task. MATCHA builds on the Pix2Struct model, a powerful image-to-text
visual language model, and further pre-trains it with numerical reasoning
task. By solving math problems rendered as images, MATCHA outperforms
previous models on standard benchmarks like PlotQA and ChartQA, demon-
strating its effectiveness in handling complex visual reasoning tasks.
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In another attempt, AskChart [47] introduces a lightweight model that
integrates both textual and visual cues from charts using a Mixture of Ex-
perts (MoE) architecture. AskChart explicitly incorporates textual informa-
tion, such as data labels and axis labels, which are often overlooked by ex-
isting models. By aligning visual and textual modalities, AskChart achieves
SoTA performance on multiple chart understanding tasks, including CQA.
The model’s effectiveness is further enhanced by a three-stage training strat-
egy and a large-scale dataset, ChartBank, which contains over 7.5 million
samples. This approach underscores the importance of leveraging both vi-
sual and textual information to achieve comprehensive CQA.

Table 2: Statistics of Benchmark Datasets.

Datasets #Chart type #Task type #Images #lInstruction data pairs
DVQA [115] 1 3 300K 3.4M
PlotQA [43] 3 1 224K 28M
ChartQA [44] 3 1 21.9K 32.7K

Chart-to-text [53] 6 1 44K 44K
Unichart [48] 3 4 627K ™
StructChart [I17] 3 1 9K 9K
ChartBench [49] 9 5 66.6K 599.6K
ChartX [51] 18 7 - -
MMC [118] 7 9 600K 600K
ChartSFT [55] 9 5 47K 47K
ChartLlama [56] 10 7 11K 160K
NovaChart [119] 18 15 47K 856K

In the meanwhile, the introduction of comprehensive benchmarks in Ta-
ble [2| further highlights the need for models to effectively handle complex
visual reasoning tasks. For instance, ChartBench [49] includes a wide vari-
ety of chart types and tasks, with a significant proportion of unannotated
charts to assess models’ ability to reason visually. The benchmark intro-
duces an enhanced evaluation metric, Acc+, to provide more accurate and
robust assessments. Extensive experiments on 21 mainstream MLLMs reveal
their limitations in understanding complex charts, particularly those without
data annotations. ChartBench also proposes two baselines based on chain of
thought [120] and supervised fine-tuning [121] to improve model performance.
Overall, future research should focus on developing more robust models that
can generalize well to diverse chart types and tasks, ensuring reliable and
accurate CQA in real-world applications.

Following this, ChartAssistant [55] introduces significant innovations. It
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Figure 6: A range of chart understanding and reasoning tasks ChartAssistant [55] can
perform. (Extracted from ChartAssistant [55])

employs a two-stage training process that begins with chart-to-table pre-
training to align chart elements with structured text, followed by multitask
instruction tuning on a comprehensive dataset called ChartSFT. This dataset
encompasses a wide range of chart types and tasks, enabling ChartAssistant
to achieve superior performance across various chart-related tasks, including
CQA (as shown in Figure @ By integrating chart-to-table translation and
multitask instruction tuning, ChartAssistant not only improves its under-
standing of chart structures but also enhances its ability to perform mathe-
matical reasoning and generate accurate answers to complex questions. This
approach sets ChartAssistant apart from other large-model-based techniques,
demonstrating its effectiveness in both generalization and task-specific per-
formance, especially in zero-shot settings where it outperforms existing mod-
els significantly.

More recently, Zeng et al. [I05] proposed a novel approach to enhance
MLLMs for CQA by incorporating visualization-referenced instruction tun-
ing. They identified limitations in existing datasets and models, such as
biased chart distributions and inadequate fine-grained visual encodings. To
address these issues, they introduced a data engine that filters and augments
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existing datasets, ensuring a more balanced and comprehensive representa-
tion of chart types and QA tasks. Their model, trained with this enriched
dataset, demonstrates superior performance on established benchmarks, out-
performing SoTA models with significantly fewer training examples.

4.83. Insight Generation
Insight Generation investigates methods for automatically identifying and
summarizing key patterns, trends, and anomalies from visual data.

4.8.1. Rule-based Approaches for Insight Generation

Rule-based approaches for insight generation leverage predefined rules
and logic to extract meaningful insights from data. These approaches are
particularly useful in scenarios where specific patterns or conditions need to
be identified reliably and efficiently.

Foresight [39] provides a structured framework for exploring insights through
predefined insight types and metrics. It categorizes insights into classes such
as dispersion, skew, heavy tails, outliers, and linear relationships, each with
associated ranking metrics and visualizations, allowing users to navigate the
space of insights in a systematic manner. The predefined insight classes
and metrics provided by Foresight serve as a foundation to guide the insight
generation process.

In the domain of urban traffic analysis, Zeng et al. [91] employed the unit
visualization techniques to enable transportation experts to systematically
investigate how different spatial aggregations affect prediction accuracy. The
system provides structured visual guidance for exploring the dynamic spatial
variance in urban traffic and generating insights about spatial variations in
prediction performance.

In the context of business intelligence, Vertsel et al. [92] explored the inte-
gration of rule-based systems with LLMs to enhance the extraction of action-
able insights. The rule-based systems in this hybrid approach are designed to
handle structured data with precision, ensuring that specific business rules
and thresholds are met. This method allows for the identification of patterns
and anomalies that align with predefined business logic, providing a reliable
foundation for decision-making.

4.3.2. Learning-based Methods for Insight Generation

Learning-based methods for insight generation have achieved great ad-
vancements in recent years, driven by the need to automate and enhance the
process of extracting meaningful insights from complex data.
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InkSight [59] significantly enhances insight generation in computational
notebooks by leveraging sketch interaction. It allows users to indicate data
items of their interest through intuitive sketching on charts, which is then
interpreted by the system using various learning-based methods. Specifically,
it employs the Interquartile Range (IQR) method for outlier detection, linear
regression for trend identification, and the Pearson Correlation Coefficient for
association analysis. These methods enable InkSight to automatically iden-
tify and describe key patterns and anomalies in the data, not only enhancing
the speed of insight generation but also ensuring that generated insights are
grounded in robust statistical methods, thereby improving the overall relia-
bility of the process.

Kim et al. [90] explored the use of ML to answer questions about charts
and generate visual explanations. They developed an automatic pipeline
that extracts data and visual encodings from an input chart, transforms
NL questions into queries about the data, and generates visual explanations
for the answers. This approach leverages SoOTA ML algorithms to handle
complex operations such as value retrieval, comparison, and aggregation,
significantly reducing the cognitive load on users. The pipeline’s ability to
generate transparent and useful explanations enhances the interpretability of
the insights derived from the charts.

DashBot [30] introduces a deep reinforcement learning model for gen-
erating analytical dashboards. It uses RL to explore and imitate human
exploration behavior in dashboard creation, leveraging well-established visu-
alization knowledge and the estimation capacity of reinforcement learning.
The model is designed to generate dashboards that are both insightful and
aesthetically pleasing, with a focus on diversity, parsimony, and the discov-
ery of meaningful data patterns. Through ablation studies and user studies
showing that it outperforms existing methods in terms of overall quality,
understandability, and insightfulness, the effectiveness of DashBot in insight
generation is well demonstrated.

Foresight [39] presents a system that facilitates the rapid discovery of
visual insights from large, high-dimensional datasets. It uses a novel frame-
work of insights, insight metrics, and visualizations to guide users through
the exploration process. The system employs sketching techniques to achieve
interactive performance for insight queries, allowing users to quickly identify
and explore strong manifestations of statistical properties in the data. Fore-
sight’s approach of focusing on the space of insights rather than the space
of data dimensions and visual encodings provides a more efficient and user-
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friendly experience, enabling analysts to generate and evaluate hypotheses
more effectively.

4.8.3. Large-model-based Techniques for Insight Generation

The rapid advancement of large models has opened new possibilities for
insight generation across diverse domains, from structured data analysis to
creative content generation. These techniques share a common foundation in
leveraging large models’ reasoning capabilities while addressing their inherent
limitations through innovative representations, interactive frameworks, and
automated workflows.

Instead of extracting insights directly from charts, InkSight [59] focuses on
facilitating the documentation of chart findings by leveraging user sketches.
After users intuitively sketch on visualizations to indicate areas of interest,
the system utilizes GPT-3.5 to convert data facts inferred from user sketches
into natural language documentation. The integration of LLMs ensures that
the generated documentation is coherent and natural, making it easier for
users to share and recall their analysis findings.

AutoTitle [I06] employs a large-scale natural language transformer model,
specifically the T5 model, fine-tuned on a fact-to-title dataset to generate
fluent and diverse titles that highlight key insights from visualizations. The
system extracts underlying data from visualizations, computes multi-level
facts, and uses these facts to generate titles that convey important data
features. This approach helps users quickly grasp the main insights from
visualizations through automatically generated titles.

VisTR [107] addresses the limitations of directly applying LLMs to time
series table reasoning, particularly their lack of trend recognition and analysis
capabilities. VisTR transforms time series data facets into visual representa-
tions to facilitate pattern recognition and understanding in complex tabular
data. By constructing a joint latent space that aligns three modalities-chart,
text, and hand-drawn sketches-VisTR enables cross-modal exploration and
reasoning. The framework’s integration of pruning and indexing mechanisms
further ensures scalability, demonstrating the feasibility of using MLLMs and
visual representation to help complete an intuitive data insight mining pro-
cess.

To enhance user experience in extracting insights, LEVA [61] explores
the integration of LLMs into VA workflows. It proposes a framework that
leverages LLMs to support users in three key stages: onboarding, explo-
ration, and summarization. During onboarding, LLMs interpret visualiza-
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tion designs and relationships to generate tutorials. In the exploration phase,
LLMs recommend insights based on the system’s status and data, facilitating
mixed-initiative exploration. For summarization, LLMs help retrace analyti-
cal history and generate insightful reports. The study demonstrates LEVA’s
effectiveness through usage scenarios and a user study, showing significant
improvements in efficiency and accuracy of insight generation compared to
traditional methods.

The topic of automated insight generation is fully reflected in InsightLens [80]
and InsightPilot [I5] . InsightLens takes a conversational perspective, em-
ploying a multi-agent architecture to continuously monitor and extract in-
sights from analytic dialogues. Its Insight Extraction Agent identifies mean-
ingful patterns while associating them with supporting evidence, and the
Insight Management Agent organizes this knowledge along thematic and
data-centric dimensions. This passive, conversation-driven method contrasts
with InsightPilot’s proactive exploration paradigm, where an LLM-driven
engine autonomously designs and executes analysis sequences in response to
user queries. Together, these systems showcase the spectrum of possibilities
in automated insight generation—from reactive extraction to guided explo-
ration—while significantly lowering the expertise barrier for data analysis.

More recently, ChartInsighter [54] introduces a novel system that lever-
ages LLMs to automatically generate summaries of time-series data charts.
It addresses a critical challenge in the field by identifying and mitigating com-
mon hallucinations that can occur during the summary generation process.
By integrating external data analysis modules and employing multi-agent
collaboration, Chartlnsighter enhances the accuracy and comprehensiveness
of the generated summaries, effectively reducing hallucinations and improv-
ing the quality of insights. The system’s self-consistency test further ensures
the quality of the insights, making ChartInsighter a valuable tool for insight
generation.

5. Research Challenges and Opportunities

5.1. Challenges

Lack of High-Quality Datasets. A critical barrier in chart understanding re-
search is the lack of diverse, large-scale, and accurately annotated datasets
that adequately reflect real-world complexity. Most datasets (e.g., DVQA [115],
ChartQA [44]) focus on basic chart types (bar, line, pie) but omit complex
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or hybrid visualizations (e.g., stacked area charts, small multiples, or interac-
tive dashboards). This restricts model generalizability to practical scenarios
where charts combine multiple encodings. Also, many chart datasets suffer
from annotation inconsistencies that hinder model reliability. For example,
axes or legends in charts may be fully annotated, but critical elements (e.g.,
outliers, trendlines) are ignored, forcing models to ”guess” missing context.
This leads to overfitting on shallow features (e.g., axis ticks) rather than
learning robust semantics.

Task-specific Limitations. Even with available datasets, models still struggle
with specific tasks. Current annotations often prioritize low-level tasks (e.g.,
extracting raw values) over higher-order reasoning. For example, datasets
rarely label why a trend exists (e.g., causal relationships) or how design
choices (e.g., log vs. linear scales) change perception, limiting progress to-
ward interpretative chart understanding. As a result, current approaches of-
ten excel in narrow tasks (e.g., extracting numerical values from bar charts)
but struggle with broader challenges like interpreting implicit trends, com-
bining multi-chart reasoning, or handling domain-specific visualizations (e.g.,
biomedical charts), as they require more complex visual reasoning pipelines.

5.2. Opportunities

Advanced Chart Understanding. As charts become increasingly sophisticated
mediums for data communication, there is a growing interest in developing
models capable of decoding complex visual information embedded in hybrid
charts and interactive dashboards. These challenges necessitate advance-
ments in visual perception and fine-grained vision-language alignment for
MLLMs. Some works have demonstrated that incorporating techniques from
multimodal learning (e.g., vision-language pretraining) has the potential to
bridge low-level visual features with high-level semantic concepts [122, [107],
thus fostering deeper chart understanding. Furthermore, innovative ap-
proaches leveraging program-of-thought reasoning have enhanced MLLMs’
performance in chart understanding and reasoning scenarios, especially those
involving mathematical computations [52] [123]

Future work may systematically discover the chart-specific bottlenecks in
current MLLMs and develop targeted solutions to address these limitations.
Potential paths include specialized attention mechanisms for chart element
recognition and domain-adaptive pertaining strategies to enhance the robust-
ness of models across diverse chart types and domains. Such advancements
would continually enhance the visual perception capabilities of MLLMs in
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chart understanding tasks, and then narrow the gap between models and
human performance in chart understanding.

Applications in Downstream Tasks. The enhanced fine-grained grounding ca-
pabilities of MLLMs in charts can empower various downstream applications,
such as automated scientific figure analysis, real-time business report gener-
ation, and educational tools for data literacy. In particular, for dynamic
interactive charts and dashboards, MLLMSs’ precise grounding capabilities
can directly enable user operations such as ‘click’, ‘filter’; or ‘selection’ to
interact with elements of charts. This ability to ground visual elements ac-
curately can enable deeper, more intuitive data exploration.

The visual insight mining pipeline can be extended to various tasks and
domains. In finance, it can enhance the analysis of market trends and port-
folio performance; for manufacturing and supply chain management, it can
help extract abnormal data from dashboards. For different requirements in
complex business and scientific scenarios, collaborations with domain experts
will be crucial.

Emerging Research Questions. The growing focus on chart understanding
has sparked plenty of novel research questions that extend beyond traditional
tasks like data extraction or basic summarization. A critical question lies in
quantifying and mitigating hallucinations that occur when large models gen-
erate insights from charts. Addressing this issue calls for the development of
specialized evaluation metrics and benchmarks. Another promising path in-
volves the understanding and interpretation of uncertainty in visualizations.
Effective reasoning about visual representations of uncertainty (e.g., error
bars, confidence intervals) is crucial, particularly when making comparative
assertions or trend analyses [124]. Furthermore, the compositional reason-
ing over chart elements presents a challenge. Many complex insights require
compositional understanding across multiple elements. Future work could
explore enhancing models’ ability to perform multiple-step reasoning that
integrates information across these components and improve overall inter-
pretative accuracy.

Pipeline Innovation. The advancing capabilities of MLLMs may signifi-
cantly transform the pipeline of visual insight mining. While conventional
pipelines in Figure (1] follow rigid, sequential steps, emerging MLLM-powered
approaches enable a simpler pipeline, directly from data to visualization and
insight, in an intuitive manner. As shown in Figure [7] future systems may
increasingly shift towards user-centric frameworks and incorporate feedback
loops, enabling users to interactively query or refine charts via natural lan-
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Figure 7: A potential visual insight mining pipeline in MLLM-powered approaches.
guage and mine visual insights iteratively.

6. Conclusion

In this survey, we investigate the emerging field of visual insight mining,
a domain that has become increasingly vital for transforming complex data
into actionable knowledge. The importance of this field stems from visual-
ization’s unique ability to make complex data interpretable while modeling
the journey from raw data to meaningful insights. Realizing the importance
of visualization in the insight mining process, researchers have significantly
advanced two main stages: Data2Vis and Vis2Insight. They have also made
significant progress in critical tasks such as task decomposition, visualiza-
tion generation, visualization recommendation, chart parsing, chart question
answering, and insight generation. For each of the six tasks, we compre-
hensively review three primary methods: rule-based approaches, learning-
based techniques, and large-model-based solutions. Our survey reveals that
visualization serves as a crucial step in the data-to-insight pipeline. More
importantly, visualization has great potential to completely bridge the gap
between data and insight, especially in this multimodal era.
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